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Abstract. Non-Markovian dynamics in open quantum systems is characterized by a time–non-locality in
the equation of motion valid for the reduced density operator. An expansion of this density matrix equation
with respect to Laguerre polynomials is used to tackle the time–non-locality. The applicability and the
numerical limitations of the method are discussed in detail. In order to illuminate the characteristics of
non-Markovian dynamics the reference example is studied of a single quantum degree of freedom moving
in a harmonic potential and being embedded in a heat bath. If interpreted as the photoinduced dynamics
of nuclear motion in polyatomic molecules we can suggest two clear signatures of non-Markovian dynamics
observable in ultrafast optical experiments, firstly a pronounced and somewhat irregular oscillatory be-
havior of the vibrational level populations, and secondly a separation of the vibrational wavepacket into a
double-structure.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates –
82.70.Dd Colloids – 02.60.Cb Numerical simulation; solution of equations – 02.60.Nm Integral
and integrodifferential equations

1 Introduction

If a small subsystem embedded in a large environment is
studied it is a common observation that the subsystem dy-
namics shows retardation effects. These retardation effects
are caused by the coupling to the environmental degrees
of freedom and can be accounted for by certain environ-
mental correlation functions. For the time-evolution of a
probability distribution, the type of equations showing re-
tardation effects are known as non-Markovian equations
of motion. The neglect of the retardation is usually termed
Markov approximation (see, for example [1,2]).

Although typical for quantum as well as classical sys-
tems we will concentrate the following in non-Markovian
effects taking place in a small quantum system (active sys-
tems S) interacting with a macroscopic heat bath (reser-
voir R). For such a case the complete system S + R has
to be described by the time-dependent quantum statis-
tical operator Ŵ (t). The appropriate quantity to follow
the dynamics of S is given by the reduced statistical op-
erator ρ̂(t). It is obtained from Ŵ (t) by taking the trace
with respect to the reservoir states, i.e. ρ̂(t) = trR{Ŵ (t)}.
Since the equation of motion determining ρ̂(t) is of the op-
erator type, retardation and thus non-Markovian behav-
ior is governed by a time non-local superoperator acting
on ρ̂ according to

∫ t
0

dτM(τ)ρ̂(t − τ). The quantity M
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defines the (superoperator) memory kernel. According to
the well-established approach leading to the Nakajima-
Zwanzig equation for ρ̂(t) an exact expression forM(τ) is
known (see, e.g. [1,3]), which usually serves as a starting
point for perturbational expansions. The decay of M(τ)
with increasing τ fixes the characteristic time-scale τmem

for which retardation (memory) effects are important. It
is worth mentioning here that the path integral represen-
tation of the reduced density matrix incorporates retarda-
tion effects also (for a recent overview we mention [4]).

As an alternative to the Nakajima-Zwanzig equation
an equation of motion for ρ̂(t) has been suggested which
is exact but local in time, i.e. dissipation is described by
D(t)ρ̂(t). This results in the so-called time-convolutionless
density matrix equation [5] (see also the discussion in [6]).
Within this approach the absence of the time-nonlocality
has been achieved by introducing into D(t) the reverse
time-evolution from the actual time back to the initial
time. This can be understood as the presence of additional
partial expansions with respect to the perturbation (the
system-reservoir coupling). Both density matrix equations
may be related to one another if one expands ρ̂(t − τ),
which appears in the time-nonlocal approach, in powers
of τ [7]. If the second-order version of D(t) (with respect
to the system-reservoir coupling) is taken a nearly cor-
rect reproduction of the non-Markovian dynamics (of this
second-order perturbation type) can be obtained [8].
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The discussion of the various problems related to non-
Markovian dynamics in open quantum systems has re-
ceived a lot of interest in recent years [6,7,9–17]. This
has been mainly initiated by the developments in fem-
tosecond spectroscopy. It is typical for this type of laser
spectroscopy that one can achieve pulse lengths (in the
optical and near infrared region) smaller than the char-
acteristic time τmem of the retarded system-environment
interaction. If electron and even vibrational dynamics in
molecular or solid state systems is considered the time-
scale of this motion may also match τmem. This fact un-
derlines the well-accepted opinion that a proper descrip-
tion of systems in the condensed phase interacting with
ultra-short laser pulses with duration in the region of some
10 fs desires a non-Markovian description of dissipation.
For higher intensities of the laser pulse, one additionally
has to incorporate the pulse modulation of the system-
environment coupling (laser intensity dependence of dis-
sipation) [16,17].

A direct solution of the non-Markovian density oper-
ator equation requires the necessity to carry out an inte-
gration back into the past including the density operator.
In particular, for memory kernels with a comparable large
τmem this would become a cumbersome attempt. There ex-
ist different alternative approaches to circumvent this dif-
ficulty. To account for the time-nonlocallity in simple few
level systems the density matrix theory can be combined
with the Laplace transformation method [9–11]. Addition-
ally, this approach allows to relate the effect of dissipation
described in the time-domain to the frequency-domain.
For example, non-Markovian dynamics is related to the
frequency dependence of absorption line-broadening (see
also [7,18]). To determine the memory kernel of larger
systems one makes the assumption that the spectral den-
sity of the environmental modes can be represented by a
Lorentzian type of distribution. The resulting exponential
form of the memory kernel offers the possibility to use
a simple predictor-corrector method for the integration
of the equation of motion [13,16]. The replacement of the
time-nonlocality by adding to an existing system some fic-
titious modes has been suggested in [19]. The additional
modes can be treated within a Markov approximation and
have to be chosen in such a manner that they reproduce
the spectral density of the environment. Clearly, if one
needs too many fictitious modes to approximate the spec-
tral density the approach becomes inefficient.

In the present work we explain an alternative and
quite general method which enables us to treat the non-
Markovian density matrix equation in an exact manner
and for any type of spectral density. The approach is
based on an expansion with respect to certain special func-
tions [20,21], which results in a conversion of the integro-
differential equations into algebraic ones. From previous
work in references [22,23] it follows that the most suitable
type of special functions is given by the orthonormal set
of Laguerre polynomials defined as

Ln(t) =
1
n!

et
(

d
dt

)n
(tn e−t) . (1)

Beside different other properties given below, Laguerre
polynomials obey the following important equation∫ t

0

dτLn(t− τ)Lm(τ) = Ln+m(t)− Ln+m+1(t) . (2)

This represents the key relation to handle any type of
time non-locality. If all ingredients of the non-Markovian
density matrix equation are expanded with respect to the
Laguerre polynomials the difficulty to treat the retarda-
tion effects has been overcome.

Such a relative simple replacement of the time nonlo-
cality enables us to describe the non-Markovian dynam-
ics of multi-level quantum systems. The efficiency of the
Laguerre polynomial expansion method and the stability
and accuracy of the related numerics will be of special
interest in this connection. All these questions are dis-
cussed in Section 4. But before doing this we specify in
the following section our system S as well as the coupling
to the environment and introduce the respective Hamil-
tonian. Furthermore, we offer the non-Markovian and the
Markovian version of the density matrix equation to be
solved (quantum master equation, QME). The Laguerre
polynomial method will be presented in Section 3. All
numerical results underlying the characteristics of non-
Markovian quantum dynamics can be found in Section 4.
Some details of the method are discussed in the appendix
together with a simple reference example for which the
non-Markovian dynamics can be described analytically.

2 The non-Markovian quantum master
equation

In line with the separation of the whole system S + R into
the (active) system and the reservoir part, the complete
Hamiltonian is written as H = HS +HS−R +HR, involv-
ing the system Hamiltonian HS, the reservoir Hamiltonian
HR and the coupling Hamiltonian HS−R between both.
According to the purposes of the present paper we chose
a simple example for H, namely a harmonic oscillator cou-
pled to a macroscopic reservoir of thermalized harmonic
oscillators. Introducing a notation with a dimensionless
coordinate Q = b + b+ related to the oscillator annihila-
tion and creation operator, the system Hamiltonian sim-
ply reads HS = T+U ≡ ~ωvibb

+b with oscillator potential
U(Q) = ~ωvibQ/4. (Although quite simple, the oscillator
serves as a minimal model to describe, e.g. vibrational dy-
namics in a given electronic level of a molecular system.)

The system-bath interaction is taken in the following
form

HS−R = K(Q)Φ(Z), (3)

where the operator K(Q) operates exclusively in the
Hilbert space of the active system states, while Φ(Z) is
defined in the space of the reservoir states and depends on
the reservoir coordinates. HR corresponds to the Hamilto-
nian of the large number of reservoir harmonic oscillators.
In order to simulate a simple system-reservoir coupling
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we will take the bilinear ansatz, where K(Q) = Q. Fur-
thermore, we suppose Φ(Z) = ~

∑
ξ kξZξ, with kξ being

the respective coupling constant.
There are various physical realizations of a quantum

oscillator embedded in a thermal environment. Concen-
trating here on femtosecond spectroscopy of molecular sys-
tems we will identify the oscillator by a vibrational degree
of freedom of a molecule which undergoes electronic tran-
sitions after photoexcitation (see, e.g. [3]). Mostly, the os-
cillator equilibrium position changes upon the electronic
transition resulting in an electron-vibrational coupling. If
the electronic transition is realized by a light-pulse which
is comparable to or shorter than the vibrational oscilla-
tion period the coordinate is prepared in a nonequilib-
rium state and respective wavepacket dynamics follows.
The active coordinate is coupled to other vibrational de-
grees of freedom. If their equilibrium position changes only
slightly in the course of electronic transitions they can be
described as a thermal reservoir of passive coordinates. In
cases where a normal-mode analysis can be carried out it
is natural to describe the passive vibrational coordinates
by a (large) set of independent harmonic oscillators.

The dissipative dynamics of the simple system intro-
duced so far is described by the statistical operator ρ̂(t)
reduced to the state space of the active system oscillator.
Carrying out a second-order perturbation expansion with
respect to the system-bath interaction we end up with the
QME (see, e.g. [3])

∂

∂t
ρ̂(t) = Î(t; Ŵ (t0))− iLSρ̂(t)− D̂(t, t0; ρ̂) . (4)

The first term on the right-hand side describes correla-
tions caused by an initial state of the whole system S + R
which does not factorize into a pure system part and a
pure reservoir part. It is usually assumed that such initial
correlations decay on a time-scale of τmem. Therefore, we
will neglect Î. (A numerical confirmation of this fast decay
of Î can be found in [16]. But also compare the reasoning
given at the beginning of Section 4 for excited-state prepa-
ration by external fields.) The reversible part of the dy-
namics are governed by the Liouvillian LS ≡ [HS, ...]−/~.
And, the part of equation (4) given by D̂ describes dissi-
pation and includes the convolution of the memory kernel
superoperatorM and the density operator

D̂(t, t0; ρ̂) =

t−t0∫
0

dτ M(τ)ρ̂(t− τ). (5)

(The relation given in the introductory part follows for
the initial time t0 = 0.) According to the second-order
perturbation theory (inherent to the QME) the memory
kernel superoperator reads in detail [3,24]

M(τ)ρ̂(t− τ) =(
C(τ)

[
K(Q), US(τ)K(Q)ρ̂(t− τ)U+

S (τ)
]
−

− C∗(τ)
[
K(Q), US(τ)ρ̂(t− τ)K(Q)U+

S (τ)
]
−

)
. (6)

The expression contains the reservoir correlation function
which is given as

C(t) =
1
~2

trR{R̂eq U
+
R (t)ΦUR(t) Φ} · (7)

Here, we introduce R̂eq = exp−HR/kBT/trR{exp
−HR/kBT}. The time-evolution operators used in the two
foregoing equations are defined as UA(t) = exp−iHAt/~
with A = S,R. The definition of C(t) takes into considera-
tion that trR{R̂eqΦ} = 0. As it is well known (see, e.g. [3])
the correlation function can be expressed as

C(t) =
∫

dω e−iωt (1 + n(ω)) (J(ω)− J(−ω)) , (8)

with n(w) = 1/(exp(~ω/kBT )−1) being the Bose-Einstein
distribution. J(ω) represents the spectral density of reser-
voir oscillators

J(ω) =
∑
ξ

k2
ξδ(ω − ωξ) = Θ(ω)J0j(ω) , (9)

where the function j(ω) has been normalized to 1 in the
frequency interval between 0 and ∞. (Θ(ω) denotes the
unit-step function.) For the computations explained below
we use the ansatz

j(ω) =
ω

ω2
c

e−ω/ωc . (10)

The inverse of the cut-off frequency ωc gives a rough mea-
sure for the characteristic time τmem on which the corre-
lations of the reservoir degrees of freedom decay. We will
denote the inverse of ωc by tc.

For the following considerations it is most appropriate
to change to the state (energy) representation of the QME.
To this end equation (4) is expanded with respect to the
eigenstates |a〉, |b〉 etc., of HS. In the course of the nu-
merical calculations we have to identify these states with
the harmonic oscillator eigenfunctions |M〉. The resulting
state representation of the QME reads [3]

∂

∂t
ρab(t) = −iωabρab(t)−

∑
c,d

t∫
0

dτ Mab,cd(τ)ρcd(t− τ) .

(11)

Note the special choice t0 = 0, and the abbreviation
ωab = (Ea − Eb)/~, where the Ea are eigenvalues of HS.
The tetradic matrixMab,cd(τ) following from the memory
kernel superoperator reads in detail

Mab,cd(τ) =

δa,c
∑
e

Mde,eb(−τ)eiωeaτ + δb,d
∑
e

Mae,ec(τ)eiωbeτ

−Mdb,ac(−τ)eiωbcτ −Mdb,ac(τ)eiωdaτ , (12)

with

Mab,cd(τ) = C(τ)〈a|K|b〉〈c|K|d〉 · (13)
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If the memory function dies out fast the dissipative part
of equation (11) is usually simplified in carrying out the
Markov approximation. Therefore, one changes from t− τ
to t in the argument of the density operator. The latter
procedure has to be done in the interaction representation
by taking ρab(t− τ) ≈ exp(iωabτ)ρab(t). As an additional
approximation one can prolongate the upper bound of the
integral to infinity. It yields the dissipative part of equa-
tion (11) as

∑
cdRab,cdρcd where the complex Redfield

tensor reads

Rab,cd = δa,c
∑
e

M̂∗be,ed(−ωed) + δb,d
∑
e

M̂ae,ec(ωce)

−M̂∗ca,bd(−ωbd)− M̂db,ac(ωca) . (14)

Here, M̂ab,cd(ω) denotes the half-sided Fourier trans-
form of the function introduced in equation (13) (note
M̂ab,cd(ω) = M̂∗cd,ba(−ω)). The usual Redfield tensor is
obtained as the real part of the above given expression
[3,24,25]. This QME is local in time, so the solution can
be found by a standard Runge-Kutta type method [26].

3 Solution of the non-Markovian equation
of motion

The equations of motion (11) represent a set of coupled
integro-differential equations. As already claimed an ex-
pansion of equation (11) with respect to Laguerre poly-
nomials will remove the time nonlocality as well as the
time derivative and leads to a set of algebraic equations.
In solving these equations one obtains the expansion co-
efficients of the density matrix from the expansion coeffi-
cients of the memory kernel which have to be computed
separately. This computation will be presented in such a
general form that any restriction to a special type of the
memory kernel (or the reservoir correlation function) can
be avoided.

3.1 Laguerre polynomial expansion

The key property of the Laguerre polynomials which en-
able an effective application of the method is their orthog-
onality with respect to the scalar product

(f, g) =
∫ ∞

0

dθe−θf(θ)g(θ). (15)

In our application to the solution of the equation of mo-
tion, i.e. the determination of the time evolution of the
density matrix, the dimensionless variable θ has to be
properly mapped on the time t. This can be done via a
relation

θ =
t

tchar
, (16)

where the time-constant tchar roughly fixes the character-
istic time-interval in which the function to be expanded
by Laguerre polynomials can be properly described.

Using now the dimensionless time θ, the expansion of
the various parts of equation (11) is achieved according to

ρab(θtchar) =
∞∑
n=0

ρ
(n)
ab Ln(θ) , (17)

and

Mab,cd(θtchar) =
∞∑
n=0

M(n)
ab,cd Ln(θ) . (18)

Applying now the scalar product (15) we obtain, for ex-
ample, the expansion coefficients of the density matrix
defined as

ρ
(n)
ab =

∞∫
0

dθ e−θLn(θ)ρab(θtchar) . (19)

The initial values of the density matrix can be related to
the complete sum of the expansion coefficients according
to (note Ln(θ = 0) = 1)

ρab(t = 0) =
∞∑
n=0

ρ
(n)
ab . (20)

Beside the fundamental property, equation (2) we take
into account [23,27,28]

∂

∂θ
Ln(θ) = −

n−1∑
m=0

Lm(θ) (21)

and carry out Laguerre polynomial expansion of the non-
Markovian QME, equation (11). It follows a recurrence
formula for the density matrix expansion coefficients∑
cd

(
(i tcharωab + 1)δacδbd + t2charM

(0)
ab,cd

)
ρ

(n)
cd =

ρab(t = 0)−
n−1∑
m=0

(
ρ

(m)
ab + t2char

∑
cd

[
M(n−m)

ab,cd

−M(n−m−1)
ab,cd

]
ρ

(m)
cd

)
. (22)

Such an existence of a recurrence formula represents the
great advantage of the Laguerre polynomial method com-
pared to the Laplace transformation technique. To get
within the latter method, the transformed density ma-
trix, one has to invert the complete Laplace-transformed
tetradic coefficient matrix. However, this can be avoided
here. Finally, to compute the expansion coefficients of the
density matrix it remains to determine the expansion co-
efficients of the memory kernel.

3.2 Determination of the memory kernel expansion
coefficients

The memory kernel expansion coefficientsM(n)
ab,cd have to

be computed in similarity to equation (19). Unlike to [23]
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it is not possible to obtain these coefficients analytically.
Since we expect the need of using (at least) some hundreds
of polynomials it becomes necessary to evaluate the re-
spective time integrals with polynomials of high order. To
do this by an ordinary numerical method would be either
inaccurate or inconveniently time consuming. Therefore,
we try to proceed analytically as far as possible.

A detailed inspection of relation (12) demonstrates
that we have to handle contributions of the type (∆ω̃ =
tchar∆ω where ∆ω denotes one of the various transition
frequencies)

C̃(n) =

∞∫
0

dθ Ln(θ)ei∆ω̃θe−θC(±θtchar). (23)

This expression enables us to fix the value of tchar. Since
we will consider correlation functions decaying on a time-
scale of some 10 fs we set tchar = 10 fs. Indeed, such a
value is large enough to avoid any suppression of C(t) by
the exponential prefactor.

To calculate the above type of integrals we proceed as
follows. First we note that C(t) follows from an inverse
Fourier transformation according to equation (8). In the
general case this Fourier transformation has to be carried
out numerically, and, consequently, the values of the func-
tion C(t) are given for a set of points t0, t1, . . . , tN on the
time axes, corresponding to θ0, θ1, . . . , θN in dimensionless
time. Such a set can be interpolated by the so-called cubic
splines [26], which result in a function, analytical by-parts
and continuous up to the second derivative. Then, between
any two points θj , θj+1 of the set, the function C(θtchar)
is represented by a cubic polynomial and the integral (23)
turns to a sum of the integrals

C̃
(n,j)
spl =

θj+1∫
θj

dθ Ln(θ)ei∆ω̃θe−θC(j)
spl (±θtchar) , (24)

with C
(j)
spl (t) being a spline interpolation of C(±t) in the

interval [tj , tj+1]. For all of these integrals a special recur-
rence formula can be derived, and it becomes possible to
evaluate the integrals for any polynomial order and any
value of ∆ω. For more details see Appendix A.

With this technique we can evaluate the expansion co-
efficients M(n)

ab,cd with sufficient accuracy and a smaller
computation time. The accuracy of the above given
scheme can be easily checked by a comparison of the orig-
inal memory function, equation (18) and its numerically
obtained approximation. Having the expansion coefficients
M(n)

ab,cd at hand, we get the expansion coefficients ρ(n)
ab by

a straightforward solution of the algebraic equations (22).

4 Results

If the Laguerre polynomial expansion is to be applied, ini-
tially one has to gain some insight into the convergence

behavior, the numerical stability and the accuracy. This
will be done in the following together with the investiga-
tion of the non-Markovian dynamics of the chosen model
system.

To have a concrete physical system in mind we take the
parameters according to the previously studied minimal
model of a polyatomic molecule in solution (see [17,29]).
Therefore, the oscillator studied here has to be understood
as corresponding to an effective molecular vibrational de-
gree of freedom moving in a certain potential energy sur-
face and having a quantum energy of 190 meV. Accord-
ing to this value the correlation function C(t) taken for
room temperature does not differ substantially from C(t)
at zero temperature for which the actual calculations have
been carried out. The initial condition for our QME has
been chosen in the form of the displaced oscillator ground
state wave function. Such an initial state may be achieved
via an electronic transition ending up in the potential en-
ergy surface under discussion. It corresponds to an excited
electronic state and has been populated via the action of
an ultrafast laser pulse. As explained in detail [8], such an
external field preparation of an excited electronic state re-
moves the need to account for initial correlations present
in the basic QME (4). Therefore, the solution of the QME
becomes valid already at an earlier time region.

For the density matrix we may set (note the use of the
oscillator quantum numbers instead of a, b etc.)

ρMN (t = 0) = 〈M |D+(g)|0〉〈0|D(g)|N〉 (25)

where the displacement operator D+(g) = exp g(b − b+)
has been introduced. Since the wavepacket has been put
between the third and fourth excited vibrionic level the
dimensionless displacement g amounts to the value 2. The
QME is solved for inverse cut-off frequencies tc of the spec-
tral density, equation (9) between 10 and 100 fs.

4.1 Applicability and accuracy of the polynomial
method

It has been already highlighted in [23] and can be made ob-
vious by an inspection of equation (22) that the accuracy
of the memory kernel expansion determines the accuracy
of the computed density matrix elements. Having at hand
a sufficient good approximation of the memory kernel for
the time interval [t1, t2] one may expect that the density
matrix expansion results in the same accuracy.

A convenient proof of the convergence of the expansion
is to compute the contribution given by a few last terms
in the expansion while enlarging the number of expansion
coefficients. However, in a case where the function f(t) to
be expanded is known we can easily check the accuracy
of the actual expansion fexp(t;N) = fexp(θtchar;N) =∑N
n=0 f

(n)Ln(θ) of order N by introducing

σ(t1, t2;N) =
1

t2 − t1

t2∫
t1

dt | f(t)− fexp(t;N) | . (26)



638 The European Physical Journal B

0 2000 4000 6000
−10

−5

0
0 2000 4000 6000

−8

−4

0

0 2000 4000 6000
−8

−4

0

Number of coefficients

lo
g(

   
)

lo
g(

   
)

lo
g(

   
)

σ
σ

σ

a)

b)

c)

t  = 10 fs

t  = 100 fs

n = 4

n = 8

Fig. 1. Accuracy of the Laguerre polynomial expansion. The
measure σ(ta = 0, tb = 300 fs;N), equation (26) and ∆σ(ta =
0, tb = 300 fs;N + 100, N), equation (27) are drawn versus the
expansion order N . Part (a) σ (solid line) and ∆σ (dashed
line) for correlation function C(t) with different tc. Part (b)
The same as in part (a) but for the function C(t)einωvibt the
single value tc = 10 fs but for different ∆N . Part (c) ∆σ(ta =
0, tb = 300 fs;N+100, N) versus N for the diagonal elements of
the harmonic oscillator density matrix. Solid line: ρ00, dashed
line: ρ44, dashed-dotted line: ρ88.

The expression gives the absolute value of the difference
between the original function and its N ’th order expansion
averaged with respect to the time interval [t1, t2]. If the
function f(t) is not known one has to compare different
orders N of the expansion, say N and N + ∆N , (∆N >
0). For this reason one may introduce as a measure of
accuracy

∆σ(t1, t2;N +∆N,N) =
tchar

t2 − t1

×
t2/tchar∫
t1/tchar

dθ

∣∣∣∣∣
N+∆N∑
n=N+1

f (n)Ln(θ)

∣∣∣∣∣ . (27)

In Figure 1 we demonstrate the accuracy of the polynomial
expansions of the correlation function and the density ma-
trix elements. The quantities σ(0, 300 fs;N), equation (26)
as well as ∆σ(1, 300 fs;N+100, N), equation (27) are pre-
sented in part (a) of Figure 1 as a function of the order
N of the Laguerre polynomial expansion. Both measures,
σ and ∆σ have been calculated for the case of the cor-
relation function C(t), equation (8) with inverse cut-off
frequencies 1/ωc = tc = 10 fs and 100 fs. In part (b) of
Figure 1 the same quantities are drawn for C(t)einωt with
n = 4, 8 and with tc = 10 fs.

Both measures show a strong decay forN less than 103.
Afterwards a saturation appears if N is further increased.
As it has to be expected the correlation function with
tc = 100 fs needs a higher expansion order to reach sat-
uration. The saturation behavior points out the fact that

the accuracy of the expansion reaches its limit if it co-
incides with the accuracy of the spline approximation. Of
course, this can be improved by shortening the step length
of the spline approximation. Interestingly, σ as well as ∆σ
are of the same order, this indicates that they can be used
alternatively.

Next, the accuracy of the density matrix expansion
is estimated where the only measure to be used is given
by ∆σ, equation (27). The accuracy of this expansion is
determined by that of the memory kernel. But different
components of the correlation function are expanded with
different accuracies. For example, some highly oscillating
terms do not substantionally contribute to the dynamics,
and an expansion with low accuracy seem to be sufficient.
∆σ(0, 300 fs;N + ∆N,N) as a function of N for ∆N =
100 and resulting from the expansion of different density
matrix elements is presented in part (c) of Figure 1.

4.2 Numerical results for the model system

Based on the technical details which have to be noticed if
the Laguerre polynomial expansion is used, we proceed in
studying the non-Markovian dynamics of our model sys-
tem. Of basic interest would be a comparison with the dy-
namic behavior present in the limit of the Markov approx-
imation. This comparison can be carried out in different
ways. First we can try to compare those different types of
non-Markovian dynamics which obey the same Markov-
limit as a common feature. In comparing equation (12)
with equation (14) we see that the demand for the same
Markov-approximation is equivalent with the demand for
the same Redfield tensor. This can be translated to the de-
mand that the different types of correlation function C(t)
used in the comparison should have the same values C(ω)
at certain frequencies. In the present case of a harmonic
oscillator there remains only the single value C(ωvib) of
C(ω) where all correlation functions should coincide.

An alternative scheme to compare different types of
non-Markovian dynamics could be based on the applica-
tion of different correlation functions C(t) with different
extensions along the time-axis, but with the same integral
value. However, we found the first of these approaches to
be more suitable for our purpose. In the Markov-limit and
in so-called secular approximation (see, e.g. [3]) the quan-
tity C(ωvib), and in the present T = 0-limit J(ωvib), can
be directly related to the inverse life-time of an oscillator
level, i.e. we have 1/τM = 2πMJ(ωvib). Thus, to compare
non-Markovian results with different correlation functions
we choose the coupling in such a way, that corresponds in
the Markov-limit to the same life-time of the first excited
oscillator level.

To study different dynamic regimes of the model sys-
tem we first consider in which manner the coupling-
strength of the system oscillator to the reservoir (j0 in
our case, see Eq. (9)) influences the dynamics. It is a well-
accepted fact that the positivity of the density matrix can
be violated if the coupling strength is enlarged beyond a
critical value (see, e.g. [12]). This drawback also has to
be expected for the non-Markovian QME. But decreasing
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Fig. 2. Occupation probabilities of the first four oscillator
levels. The solution of the non-Markovian QME (full lines)
is compared with the solution applying the Markov approxi-
mation (dashed lines). Used parameters: tc = 10 fs, J(ωvib) =
3.5× 10−4/fs (corresponding to the life-time τ1 ≈ 450 fs).

the decay-time of C(t) one may reach the limit C(t) ∼ δ(t)
resulting in the Lindblad-form of dissipation [3]. There-
fore, we have to expect that our simulations may show
the violation of the positivity of the density matrix if the
coupling to the reservoir is increased. However, this defect
of the theory should be less dominant if the decay time of
C(t) is shortened further and further.

Let us study the influence of the time-constant tc
which determines the time-scale the memory kernel de-
cays within the area of the valid coupling strengths. Fig-
ure 2 illustrates the case of a short memory for which tc
amounts about half of the oscillator period. Drawn are the
oscillator level populations PM (t) = ρMM (t) versus time
with an initial distribution according to equation (25). As
expected the Markov and non-Markov results are almost
identical within the studied time interval.

The case where the correlation time tc is comparable
to the period of the oscillator motion is shown in Fig-
ure 3. Even for this case the overall character of the time
development of the probabilities is very similar. However,
one can notice a different behavior for the Markov-case
and the non-Markov approach shortly after the time evo-
lution starts. But at t > tc both types of solutions fol-
low similar patterns. This has also been reported by other
authors [12,30] and resulted in the proposal of the arti-
ficial slippage of initial conditions in order to reproduce
the solution of the non-Markovian QME using Markovian
equations after a certain initial time interval is exceeded.
(Note also the slight difference between the Markov case
of Fig. 2 and of Fig. 3 which is originated by the presence
of an imaginary part in Eq. (14).)

Calculations similar to those already discussed have
been also done for much larger tc. In this case and for
acceptable coupling strength to the reservoir we could not
observe a substantial deviation (up to the time region of
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Fig. 3. Occupation probabilities of the first three oscillator
levels. The solution of the non-Markovian QME (full lines) is
compared with the solution applying the Markov approxima-
tion (dashed lines). Used parameters: tc = 20 fs, J(ωvib) =
3.5× 10−4/fs (corresponding to the life-time τ1 ≈ 450 fs).
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Fig. 4. Occupation probability of the fourth excited oscillator
level based on the solution of the non-Markovian QME for
J(ωvib) = 3.7 × 10−5/fs (corresponding to the life-time τ1 ≈
1090 fs) and (a) tc = 10 fs, (b) tc = 20 fs and (c) tc = 30 fs.

about 400 fs) of the level population from those for smaller
tc. Furthermore, the solution of the non-Markovian as well
Markovian QME results in a same behavior as already
discussed in relation to Figure 3.

In order to present the influence of the different choices
of the coupling strength j0 and the correlation times tc
more clearly, we show in Figures 4 and 5 only the time-
development of P4. Figure 4 displays the effect of in-
creasing tc while keeping the same Markov limit. In the
case where the correlation time becomes shorter than
the characteristic time of the system (case a) the non-
Markovian dynamics are almost identical with the corre-
sponding Markov case. Since we found that all Markovian
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Fig. 5. Occupation probability of the fourth excited oscilla-
tor level based on the solution of the non-Markovian QME
(full line) compared to the solution applying the Markov ap-
proximation (dashed-line) for tc = 20 fs and (a) J(ωvib) =
3.7× 10−5/fs (corresponding to the life-time τ4 ≈ 1090 fs) (b)
J(ωvib) = 1.9×10−4/fs (τ4 ≈ 210 fs) (c) J(ωvib) = 3.5×10−4/fs
(τ4 ≈ 110 fs).

dynamics solutions with different tc differ only by the am-
plitude of the population oscillations, this case also shows
in which area of the graph, we would find the solutions
of the Markov QME for other values of tc. Hence, we can
conclude from Figure 4 that an increase of tc leads to an
increase of the level population oscillations.

On the other hand, Figure 5 presents the influence of
an increasing coupling strength j0 while keeping tc con-
stant. As expected the increase of j0 leads to the steeper
decay of the population on the excited levels. Further
examination of the time development of the populations
shows, that also the deviation between Markov and non-
Markov solutions increase with increasing coupling, so
that finally, the non-Markov solution cannot be repro-
duced by the slippage of the initial condition of its Markov
limit. In such an attempt, the transition rates would also
have to be modified. Finally, it can be stated that differ-
ences between the solution of the non-Markovian QME
and the QME in the Markov approximation are mainly
reduced to a short initial time interval.

However, at this point it is necessary to stress that such
a conclusion can be done only with respect to the second
order QME which was used to demonstrate the applica-
bility of our method here. The polynomial method itself is
independent of the order of the perturbation theory and
can be in principle implemented to study the behavior of
the system in higher orders of perturbation theory also.

Finally, the motion of the initially prepared
wavepacket is shown in Figure 6 where the probability
distribution P (Q, t) has been drawn versus the oscillator
coordinate and time. Having the density matrix elements
ρMN (t) at hand it is easy to compute P (Q, t). This quan-
tity is directly derived from the coordinate representation
of the density operator, i.e. P (Q, t) = ρ(Q,Q; t) in using
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Fig. 6. Wavepacket dynamics following from the solution of
the non-Markovian QME for tc = 100 fs and J(ωvib) = 1.52×
10−12/fs.

ρ(Q,Q; t) =
∑
M,N χM(Q)χ∗N (Q)ρMN (t). (The χM(Q)

denote the harmonic oscillator eigenfunctions.) In order
to display the formation of a double structure in P (Q, t)
the wavepacket motion has been drawn in Figure 6 for
the relatively large value tc = 100 fs. An explanation
for the dip in the wavepacket is given in Appendix B
via an analytical solution of the non-Markovian QME
in the limit of a large tc. Here, we only state that the
obtained behavior of the oscillator wavepacket provides
the absence of correlations between the oscillator and the
bath at the initial time.

5 Conclusions

In the present work we adapted the Laguerre polyno-
mial expansion to solve the non-Markovian QME includ-
ing in its dissipative part a general form of the correla-
tion function. We tested the accuracy and applicability
of the method at a standard model of an open quan-
tum system interacting with a thermodynamic bath. Fur-
ther we compared our results with those obtain within
the Markov approximation. As the main characteristics of
non-Markovian dynamics we have to mention here (i) the
slippage of the early part of the dynamics compared to
the Markov case, (ii) the deviations with respect to the
long-time behavior, i.e. deviations between (effective) re-
laxation rates, and (iii) the formation of a double structure
in the vibrational wavepacket.

The problem of non-physical probabilities obtained for
some values of the parameters have been noted and related
to the break-down of the perturbation theory. A possible
generalization of the Laguerre polynomial method to prob-
lems characterized by time-dependent Hamiltonian will be
discussed elsewhere [8].

Finally, we comment on some other recently published
polynomial expansion methods [31,32]. Firstly, it is nec-
essary to state that they have been exclusively devel-
oped to integrate Markovian equations. This is achieved
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in using short time propagators constructed with the help
of the polynomial expansion of the time-evolution opera-
tor. The main difference between our Laguerre polynomial
approach and these methods is that the latter provides a
step-by-step solution. The Laguerre polynomial method,
however, gives the approximation of the density operator
in the complete time-interval of interest. This is of course
necessary since within non-Markovian dynamics one needs
the density matrix not only for the actual time t but also
for earlier times.

The Laguerre polynomials may also give a short-time
expansion of a time-evolution operator and thus the so-
lution of a Markovian equation of motion. Certainly, the
drawback in such a scheme is that the expansion coeffi-
cients involve an inversion of the Liouvillian [23], which
has to be held in the computer memory. For large systems
this results in a decreasing efficiency since the Liouvillian
expanded in a basis of N functions has N4 components.
This indicates that the power of the Laguerre polynomial
method lies in the domain of non-Markovian equations.
This will be illustrated in some forthcoming papers.

We gratefully acknowledge financial support by the Deutsche
Forschungsgemeinschaft through grant Ma 1356/4–2.

Appendix A: Evaluation of the memory
expansion coefficients

In Section 3 we claimed that the integrals (24) can be eval-
uated analytically. Here we want to give some more details
to this statement. The main idea of the following is to di-
vide an integral in some analytically treatable parts. As it
is mentioned above the function C(j)

spl (t) in (24) is an inter-
polation of the correlation function by cubic splines, i.e.

C
(j)
spl (θtchar) = α(θ)C(θj tchar) + β(θ)C(θj+1tchar)

+ γ(θ)C′′(θjtchar) + δ(θ)C′′(θj+1tchar) .
(28)

The four different expansion coefficients can be all ex-
pressed by the first one which reads

α(θ) =
θj+1 − θ
∆θ

≡ 1
∆θ

(
L1(θ)− L1(θj+1)

)
. (29)

Here, we introduced∆θ = θj+1 − θj . The remaining three
coefficients are

β(θ) = 1− α(θ), (30)

γ(θ) =
(∆θ)2

6
(
α3(θ) − α(θ)

)
, (31)

and

δ(θ) = − (∆θ)2

6
(
α3(θ)− 3α2(θ) + 2α(θ)

)
. (32)

The second derivative C′′ of C(θtchar) at θ = θj , θj+1 are
computed using a standard interpolating algorithm [26].
The above given relations indicate that it is necessary
to compute integrals of type equation (24) but with
C

(j)
spl (θtchar) replaced by α(θ) up to its third power. In

carrying out these integrations it is useful to generate
recurrence formulas. Therefore we define

a(m)
n =

θj+1∫
θj

dθ (L1(θ))m Ln(θ)ei∆ω̃θe−θ . (33)

In particular we have a(1)
0 = a

(0)
1 , and

a
(0)
0 = − 1

1− i∆ω̃

[
e−(1−i∆ω̃)θ

]θj+1

θj
, (34)

where the abbreviation [g(θ)]ab = g(a) − g(b) has been
introduced. These expression enables us to express the
required integrals as

θj+1∫
θj

dθ α(θ)Ln(θ)ei∆ω̃θe−θ =
1
∆θ

(a(1)
n − a(0)

n ) , (35)

θj+1∫
θj

dθ α2(θ)Ln(θ)ei∆ω̃θe−θ =
1
∆θ2

(
a(2)
n − 2L1(θj+1)a(1)

n

+ (L1(θj+1))2a(0)
n

)
, (36)

and

θj+1∫
θj

dθ α3(θ)Ln(θ)ei∆ω̃θe−θ =
1
∆θ3

(
a(3)
n − 3L1(θj+1)a(2)

n

+ 3(L1(θj+1))2a(1)
n − (L1(θj+1))3a(0)

n

)
. (37)

Accordingly, the announced recursion formulas which are
essential for an efficient computation of amn read

a(0)
n =

1
1− i∆ω̃

{[
ei∆ω̃θe−θ(Ln−1(θ) − Ln(θ))

]θj+1

θj

−i∆ω̃a(0)
n−1

}
, (38)
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and similarly for the other integrals

a(1)
n =

1
1− i∆ω̃

{[
L1(θ)ei∆ω̃θe−θ(Ln−1(θ)− Ln(θ))

]θj+1

θj

+a(0)
n−1 − a(0)

n − i∆ω̃a(1)
n−1

}
, (39)

a
(2)
0 = − 1

1− i∆ω̃

{[
(L1(θ))2ei∆ω̃θe−θ

]θj+1

θj
+ 2a(0)

1

}
, (40)

a(2)
n =

1
1− i∆ω̃

×
{[

(L1(θ))2ei∆ω̃θe−θ(Ln−1(θ)− Ln(θ))
]θj+1

θj

+2a(1)
n−1 − 2a(1)

n − i∆ω̃a(2)
n−1

}
, (41)

a
(3)
0 = − 1

1− i∆ω̃

{[
(L1(θ))3ei∆ω̃θe−θ

]θj+1

θj
+ 3a(2)

0

}
, (42)

and

a(3)
n =

1
1− i∆ω̃

×
{[

(L1(θ))3e−i∆ω̃θe−θ(Ln−1(θ)− Ln(θ))
]θj+1

θj

+3a(2)
n−1 − 3a(2)

n − i∆ω̃a(3)
n−1

}
· (43)

At the first glance the given formulas look too complex
to be used for the integration of a function of a single
variable. But according to the different attempts we un-
dertook to reach sufficient precision they seem to offer the
only way to get precise results even for Laguerre polyno-
mials of the order 105 or higher. Moreover these formulas,
if accompanied by a routine to compute Laguerre polyno-
mials via standard recurrence formulas [26] can be put in
a very compact computer code. Finally, we note that the
given spline interpolation scheme to integrate a product of
a smooth and a highly oscillating function of type exp iω̃θ
may be used in many other cases.

Appendix B: The limit of a long memory time

This appendix is aimed to demonstrate that an analyti-
cal treatment of the non-Markovian QME, equation (4) is
possible if the inequalities τmem > 1/ωvib and t & τmem

are fulfilled. The first inequality corresponds to the case in
which the internal motion of the oscillator (not disturbed
by the environment) is faster than the retardation effect
resulting from the environmental influence. The second
inequality reduces the actual time on the interval from
the beginning of the evolution up to times not larger than
τmem. Both inequalities enable us to replace the correla-
tion functions C(τ) and C∗(τ) by the common and real
value C(τ = 0). For the approximative description of the
memory effects we write equation (5) as

∫ t
0

dt̄M(t−t̄)ρ̂(t̄).
Following equation (6) the time-integral can be removed
by the definition of a new operator σ̂. It follows the whole
QME as

∂

∂t
ρ̂(t) = − i

~
[
HS, ρ̂(t)

]
−

+ i
[√

C(0)K, σ̂(t)
]
− , (44)

with the definition

σ̂(t) = i

t∫
0

dt̄ US(t− t̄)
[√

C(0)K, ρ̂(t̄)
]
−U

+
S (t− t̄) . (45)

One easily verifies that the equation of motion for σ̂ is
obtained if we interchange ρ̂ and σ̂ in the given equation
of motion for ρ̂. Accordingly one can introduce the new
density operators

ŵ(±) = ρ̂± σ̂ , (46)

with initial conditions ŵ(±)(t = 0) = ρ̂(t = 0) (note
σ̂(t = 0) = 0). The initial value ρ̂(t = 0) which should
be used in the following has been already introduced in
equation (25). Furthermore, we note ρ̂(t) = (ŵ(+)(t) +
ŵ(−)(t))/2. Since the operator K which appears in the
equations (44) and (45) has to be identified with the
(dimensionless) oscillator coordinate Q the contribution√
C(0)Q resulting from non-Markovian dissipation can be

incorporated into the oscillator Hamiltonian HS by defin-
ing shifted potential energy functions

U (±)(Q) =
~ωvib

4
(
Q∓Qc

)2 − ~C(0)
ωvib

· (47)

The origin of the oscillator potential has been displaced
to Qc = 2

√
C(0)/ωvib.

The Hamiltonian H(±)
S following from the replacement

of U by U (±) define dissipation-less equation of motions
for ŵ(±) which solution is obtained as

ŵ(±)(t) = exp
(
− i
~
H

(±)
S t

)
ρ̂(t = 0) exp

(
i
~
H

(±)
S t

)
.

(48)

Since ρ̂(t = 0), equation (25) describes a pure state,
those states both density operators ŵ(±) describe at later
times remain pure. In contrast, ρ̂(t) will describe a mixed
state. The pure states corresponding to ŵ(±) are given
by the propagation of the displaced vibrational ground-
state D+(g)|0〉 in the displaced oscillator potential U (±).
Changing to the coordinate representation the solution
follows as the moving wavepacket (see, e.g. [3])

ψ(±)(Q, t) = 〈Q| exp(− i
~
H

(±)
S t) D+(g)|0〉

= χ0(Q(±)(t))eiϕ(±)(t) . (49)

Here, χ0(Q) denotes the oscillator ground-state wavefunc-
tion which reads in the present notation (µvibωvib/π~)1/4

exp(−Q2/4) (the phase ϕ(±)(t) can be found in [3]). The
time-dependent coordinate Q(±)(t) = Q ∓ Qc + (2g ±
Qc) cos(ωvibt) describes harmonic (but shape invariant)
motion of the wavepacket. Again, we state that the non-
Markovian dissipative dynamics discussed here is not de-
scribed by a (coherent) superposition of the two types
of wavefunctions ψ(±)(Q, t). There only appear a su-
perposition of the related pure-state density operators.
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We introduce the respective coordinate distribution func-
tion as

P (Q, t) = 〈Q|ρ̂(t)|Q〉 =
1
2
〈Q|ŵ(+)(t) + ŵ(−)(t)|Q〉

= χ2
0(Q(+)(t)) + χ2

0(Q(−)(t)) . (50)

It gives the (phase insensitive) superposition of two in-
dependent coordinate distribution functions. In contrast
to the case of Markovian dissipation where a single
wavepacket is moving the given superposition introduces
a specific structure into coordinate distribution P (Q, t).
This can be seen in Figure 6, where the exact solution of
the non–Markovian QME is displayed. The mentioned dip
in P (Q, t) disappears if the memory time is reduced.
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12. A. Suárez, R. Silbey, I. Oppenheim, J. Chem. Phys. 97,
5101 (1992).

13. M.V. Korolkov, G.K. Paramonov, Phys. Rev. A 55, 589
(1997).

14. Y.J. Yan, Phys. Rev. A 58, 2721 (1998).
15. P. Gaspard, M. Nagaoka, J. Chem. Phys. 111, 5676 (1999).
16. Ch. Meier, D.J. Tannor, J. Chem. Phys. 111, 3365 (1999).
17. D.H. Schirrmeister, V. May, Chem. Phys. Lett. 297, 383

(1998).
18. Th. Renger, V. May, Phys. Rev. Lett. 84, 5228 (2000).
19. A. Imamoglu, Phys. Rev. A 50, 3650 (1994).
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21. M. Menš́ık, J. Phys. Cond. Matt. 7, 7349 (1995).
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